4 research outputs found

    A new Architecture for High Speed, Low Latency NB-LDPC Check Node Processing

    No full text
    International audience—Non-binary low-density parity-check codes have superior communications performance compared to their binary counterparts. However, to be an option for future standards, efficient hardware architectures must be developed. State-of-the-art decoding algorithms lead to architectures suffering from low throughput and high latency. The check node function accounts for the largest part of the decoders overall complexity. In this paper a new hardware aware check node algorithm and its architecture is proposed. It has state-of-the-art communications performance while reducing the decoding complexity. The presented architecture has a 14 times higher area efficiency, increases the energy efficiency by factor 2.5 and reduces the latency by factor of 3.5 compared to a state-of-the-art architecture

    Syndrome Based Check Node Processing of High Order NB-LDPC Decoders

    No full text
    International audience—Non-binary low-density parity-check codes have superior communications performance compared to their binary counterparts. However, to be an option for future standards, efficient hardware architectures must be developed. State-of-the-art decoding algorithms lead to architectures suffering from low throughput and high latency. The check node function accounts for the largest part of the decoders overall complexity. In this paper a new, hardware aware check node algorithm is proposed. It has state-of-the-art communications performance while reducing the decoding complexity. Moreover the presented algorithm allows for parallel processing of the check node operations which is not applicable with currently used algorithms. It is therefore an excellent candidate for future high throughput hardware implementations

    Low Complexity LDPC Code Decoders for Next Generation Standards

    No full text
    This paper presents the design of low complexity LDPC codes decoders for the upcoming WiFi (IEEE 802.11n), WiMax (IEEE802.16e) and DVB-S2 standards. A complete exploration of the design space spanning from the decoding schedules, the node processing approximations up to the top-level decoder architecture is detailed. According to this search state-of-the-art techniques for a low complexity design have been adopted in order to meet feasible high throughput decoder implementations. An analysis of the standardized codes from the decoder-aware point of view is also given, presenting, for each one, the implementation challenges (multi rates-length codes) and bottlenecks related to the complete coverage of the standards. Synthesis results on a present 65nm CMOS technology are provided on a generic decoder architecture
    corecore